

Welcome to Django-minipub’s documentation!

Contents:

	Installation & configuration
	Installation

	Dependencies

	Configure Your Django Settings

	The Minipub model
	Timestamps

	The concept of ‘Live’ objects

	‘staff_preview’ property

	Minipub views

	Admin

	Sitemap
	If you have custom statuses…

	Refining the concept of a ‘Live’ object
	Models

	Views

	Contributing to Django-minipub
	Example project

	Coding style

	Unit tests

	Documentation

Indices and tables

	Index

	Module Index

	Search Page

Installation & configuration

Installation

The easiest way to install Minipub is to get the latest version from PyPi [https://pypi.org/]:

pip install django-minipub

You can also live dangerously and install the latest code directly from the
Github repository:

pip install -e git+https://github.com/richardbarran/django-minipub.git#egg=django-minipub

This code should work ok - like Django [https://www.djangoproject.com/]
itself, the master branch should be bug-free. Note however that you will get far better support
if you stick with one of the official releases!

Dependencies

The following dependencies will be installed automatically if required:

	Django [https://www.djangoproject.com/].

	Django-model-utils [https://pypi.org/project/django-model-utils/].

Configure Your Django Settings

Add minipub to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 # ...other installed applications,
 'minipub',
)

You are now ready to use minipub in your code.

The Minipub model

from minipub.models import MinipubModel

class Article(MinipubModel):
 ...

MinipubModel is an abstract model that provides the following 3 fields:

	status: a list of choices; default is ‘draft’ or ‘published’.

	start: a start date; defaults to date of publication.

	end: an end date; optional.

Timestamps

MinipubModel also adds the following fields that get auto-updated and should
not be manually modified: created, modified and status_changed.

The concept of ‘Live’ objects

Objects are usually considered ‘live’ if they are ‘published’
and between the start and end dates - this is usually sufficient for them being available
to display in the public website.

live() methods are available both as a chainable filter on a queryset,
and as an instance method. For example, if you have an Article model that uses MinipubModel:

my_articles = Article.objects.live()

or

can_be_viewed = article1.live()

Extra statuses

Models can have more statuses than draft, published -
see here for more details.

Sitemaps

If you have defined a sitemap.xml, refer also to the sitemaps page.

‘staff_preview’ property

	
MinipubModel.staff_preview()

	Helper property - says if this object is being previewed by a member of staff.

Can be used when displaying objects in the website - members of staff will see all
objects, using this property in the template can help for attaching a message/custom
CSS saying that this object is being previewed.

For example, in the example_project we have this snippet:

{% if article.staff_preview %}
 <div class="label label-warning">This is a preview</div>
{% endif %}

Minipub views

from minipub.views import MinipubArchiveIndexView, MinipubYearArchiveView, MinipubDetailView

class ArticleArchiveView(MinipubArchiveIndexView):
 ...

Minipub provides a few basic views to get you started - but you are encouraged to look at the source
code. The important thing to note is the GetQuerysetMixin mixin - you can use this with most
of Django’s List- and Detail- class based-views to easily integrate minipub.

For example, in minipub’ views.py, here is the source code for defining a detail view:

class MinipubDetailView(GetQuerysetMixin, DetailView):
 pass

Admin

We have a MinipubAdmin class that basically gives you the code for displaying 2
fieldsets:

	The fieldset that controls publication:

[image: ../_images/minipub-fieldset.png]

	And the ‘status’ fieldset; these fields are read-only, and exist just for information:

[image: ../_images/minipub-status-fieldset.png]
And here is an example of using them:

from minipub.admin import MinipubAdmin

class ArticleAdmin(MinipubAdmin):

Other code...

fieldsets = (
 (None, {
 'fields': ('some', 'other', 'fields',)
 }),
 MinipubAdmin.PUBLICATION_FIELDSET,
 MinipubAdmin.TIMESTAMP_FIELDSET
)

Sitemap

We have a MinipubSitemap class that provides a small amount of boilerplate
to make creating a sitemap easier.

Here is an example of how to use it:

from minipub.sitemaps import MinipubSitemap

from .models import Article

class NewsSitemap(MinipubSitemap):
 model = Article

Basically, all you’ll need to do is set the model to use in the sitemap - in
this example, it’s Article.

If you have custom statuses…

If you have more statuses than the default ‘draft’, ‘published’, and you have different
sets of views to display these - you will also need extra sitemap classes.

You can add a minipub_live attribute to your sitemap class - exactly
the same way as you will have done for your extra views. For example:

from minipub.sitemaps import MinipubSitemap

from .models import Article

class NewsArchivesSitemap(MinipubSitemap):
 """Sitemap for the archived articles."""
 model = Article
 minipub_live = ('archived',)

Refining the concept of a ‘Live’ object

Let’s imagine that your articles can be published, but that at some point in time you will want
to manually move them to an ‘archived’ section in the website.

Models

First, you will define in your model the complete list of statuses available:

class MyCustomModel(MinipubModel):

 STATUS = Choices('draft', 'published', 'archived')

And you’ll also tweak your get_absolute_url() to handle the new options:

def get_absolute_url(self):
 if self.status == self.STATUS.archived:
 return reverse('the_url_for_the_archived_page', kwargs={'slug': self.slug})
 else:
 return reverse('the_url_for_the_published_page', kwargs={'slug': self.slug})

Views

Secondly, in your views.py you will have 2 sets of views:

	the views for the main pages.

	the views for the archived pages.

And the urls would look something like:

/news/
/news/<article slug>/
/archives/
/archives/<article slug>/

In the views, you will split out the articles to be displayed in the main section:

class ArticleDetailView(MinipubDetailView):
 model = Article
 context_object_name = 'article'
 minipub_live = ('published',)

And then the articles to show in the archives section:

class ArticleArchivesDetailView(MinipubDetailView):
 model = Article
 context_object_name = 'article'
 minipub_live = ('archived',)

We have added a new attribute - minipub_live. This will override the STATUS defined
on the model.

Contributing to Django-minipub

Contributions are always very welcome. Even if you have never contributed to an
open-source project before - please do not hesitate to offer help. Fixes for typos in the
documentation, extra unit tests, etc… are all welcome.

Example project

Django-minipub includes an example project under /example_project/ to get you quickly ready for
contributing to the project - do not hesitate to use it!

You’ll probably also want to manually install
Sphinx [http://sphinx.pocoo.org/] if you’re going to update the documentation.

Coding style

No surprises here - just try to follow the conventions used by Django itself [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/].

Unit tests

Including unit tests with your contributions will earn you bonus points, maybe even a beer. So write
plenty of tests, and run them from the /example_project/ with a
python manage.py test.

There’s also a Tox [https://tox.readthedocs.io/en/latest/index.html] configuration file - so if
you have tox installed, run tox from the /example_project/ folder, and it will run the entire
test suite against all versions of Python and Django that are supported.

Documentation

Keeping the documentation up-to-date is very important - so if your code changes
how Django-minipub works, or adds a new feature, please check that the documentation is still accurate, and
update it if required.

We use Sphinx [http://sphinx.pocoo.org/] to prepare the documentation; please refer to the excellent docs
on that site for help.

Note

The CHANGELOG is part of the documentation, so don’t forget to update it!

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 minipub	

 	
 	
 minipub.admin	

 	
 	
 minipub.models	

 	
 	
 minipub.sitemaps	

 	
 	
 minipub.views	

Index

 M
 | S

M

 	
 	minipub.admin (module)

 	minipub.models (module)

 	
 	minipub.sitemaps (module)

 	minipub.views (module)

S

 	
 	staff_preview() (minipub.models.MinipubModel method)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django-minipub’s documentation!

 		
 Installation & configuration

 		
 Installation

 		
 Dependencies

 		
 Configure Your Django Settings

 		
 The Minipub model

 		
 Timestamps

 		
 The concept of ‘Live’ objects

 		
 Extra statuses

 		
 Sitemaps

 		
 ‘staff_preview’ property

 		
 Minipub views

 		
 Admin

 		
 Sitemap

 		
 If you have custom statuses…

 		
 Refining the concept of a ‘Live’ object

 		
 Models

 		
 Views

 		
 Contributing to Django-minipub

 		
 Example project

 		
 Coding style

 		
 Unit tests

 		
 Documentation

_images/minipub-fieldset.png
You can control here the publication of this object.
An object s only ‘viewable' if its status is ‘ublishet
will no longer be viewable after that date.

Note: when you are logged in to the ‘admin, you can preview this object in the website, even i

and if today's date is after the start date. If the end date s entered, the object

it's not published.

Status: published § | Start date: 10/09/2014 | Today | End date: Today | B

_images/minipub-status-fieldset.png
When this record was created, last modified, and when the status was last changed.

Created: 105ep 2014, 12:57am. Modified: 10 Sep 2014, 1:02 am.
Status changed: 10 Sep 2014, 12:57 a.m.

